class: center, middle, inverse, title-slide # 1.3: Perfect Competition I: Short Run ## ECON 326 · Industrial Organization · Spring 2020 ### Ryan Safner
Assistant Professor of Economics
safner@hood.edu
ryansafner/IOs20
IOs20.classes.ryansafner.com
--- class: inverse, center, middle # Profit Maximization in the Short Run --- # A *Competitive* Market .pull-left[ - We assume (for now) the firm is in a .hi[competitive] industry: 1. Firms' products are **perfect substitutes** 2. Firms are .hi-purple["price-takers"], no one firm can affect the *market price* 3. Market **entry and exit are free**<sup>.hi[†]</sup> ] .pull-right[ .center[ ![](https://www.dropbox.com/s/hf8nqwitq7kypz3/commodities.png?raw=1) ] ] .footnote[<sup>.hi[†]</sup> Remember this feature. It turns out to be the most important!] --- # Visualizing Total Profit As `\(R(q)-C(q)\)` .pull-left[ - `\(\pi(q)=R(q)-C(q)\)` ] .pull-right[ <img src="1.3-slides_files/figure-html/unnamed-chunk-1-1.png" width="504" style="display: block; margin: auto;" /> ] --- # Visualizing Total Profit As `\(R(q)-C(q)\)` .pull-left[ - `\(\pi(q)=R(q)-C(q)\)` ] .pull-right[ <img src="1.3-slides_files/figure-html/unnamed-chunk-2-1.png" width="504" style="display: block; margin: auto;" /> ] --- # Visualizing Total Profit As `\(R(q)-C(q)\)` .pull-left[ - `\(\pi(q)=R(q)-C(q)\)` - Graph: find `\(q^*\)` to max `\(\pi \implies q^*\)`, max distance between `\(R(q)\)` and `\(C(q)\)` ] .pull-right[ <img src="1.3-slides_files/figure-html/unnamed-chunk-3-1.png" width="504" style="display: block; margin: auto;" /> ] --- # Visualizing Total Profit As `\(R(q)-C(q)\)` .pull-left[ - `\(\pi(q)=R(q)-C(q)\)` - Graph: find `\(q^*\)` to max `\(\pi \implies q^*\)`, max distance between `\(R(q)\)` and `\(C(q)\)` - Slopes must be equal: `$$MR(q)=MC(q)$$` ] .pull-right[ <img src="1.3-slides_files/figure-html/unnamed-chunk-4-1.png" width="504" style="display: block; margin: auto;" /> ] --- # Visualizing Total Profit As `\(R(q)-C(q)\)` .pull-left[ - `\(\pi(q)=R(q)-C(q)\)` - Graph: find `\(q^*\)` to max `\(\pi \implies q^*\)`, max distance between `\(R(q)\)` and `\(C(q)\)` - Slopes must be equal: `$$MR(q)=MC(q)$$` - At `\(q^*=5\)`: - `\(R(q)=50\)` - `\(C(q)=40\)` - `\(\pi(q)=10\)` ] .pull-right[ <img src="1.3-slides_files/figure-html/unnamed-chunk-5-1.png" width="504" style="display: block; margin: auto;" /> ] --- # Visualizing Profit Per Unit As `\(MR(q)\)` and `\(MC(q)\)` .pull-left[ - At low output `\(q<q^*\)`, can increase `\(\pi\)` by producing *more*: `\(MR(q)>MC(q)\)` ] .pull-right[ <img src="1.3-slides_files/figure-html/unnamed-chunk-6-1.png" width="504" style="display: block; margin: auto;" /> ] --- # Visualizing Profit Per Unit As `\(MR(q)\)` and `\(MC(q)\)` .pull-left[ - At high output `\(q>q^*\)`, can increase `\(\pi\)` by producing *less*: `\(MR(q)<MC(q)\)` ] .pull-right[ <img src="1.3-slides_files/figure-html/unnamed-chunk-7-1.png" width="504" style="display: block; margin: auto;" /> ] --- # Visualizing Profit Per Unit As `\(MR(q)\)` and `\(MC(q)\)` .pull-left[ - `\(\pi\)` is *maximized* where `\(MR(q)=MC(q)\)` ] .pull-right[ <img src="1.3-slides_files/figure-html/unnamed-chunk-8-1.png" width="504" style="display: block; margin: auto;" /> ] --- class: inverse, center, middle # Comparative Statics --- # If Market Price Changes I .pull-left[ - Suppose the market price *increases* - Firm--always setting `\(MR=MC\)`--will respond by *producing more* ] .pull-right[ <img src="1.3-slides_files/figure-html/unnamed-chunk-9-1.png" width="504" style="display: block; margin: auto;" /> ] --- # If Market Price Changes II .pull-left[ - Suppose the market price *decreases* - Firm--always setting `\(MR=MC\)`--will respond by *producing less* ] .pull-right[ <img src="1.3-slides_files/figure-html/unnamed-chunk-10-1.png" width="504" style="display: block; margin: auto;" /> ] --- # If Market Price Changes III .pull-left[ - .hi-purple[The firm's marginal cost curve is its (inverse) supply curve]<sup>.hi[†]</sup> `$$Supply=MC(q)$$` - How it will supply the optimal amount of output in response to the market price ] .pull-right[ <img src="1.3-slides_files/figure-html/unnamed-chunk-11-1.png" width="504" style="display: block; margin: auto;" /> ] .footnote[<sup>.hi[†]</sup> Mostly...there is an exception we'll see shortly!] --- class: inverse, center, middle # Calculating Profit --- # Calculating Average Profit as `\(AR(q)-AC(q)\)` .pull-left[ - Profit is `$$\pi(q)=R(q)-C(q)$$` ] .pull-right[ <img src="1.3-slides_files/figure-html/unnamed-chunk-12-1.png" width="504" style="display: block; margin: auto;" /> ] --- # Calculating Average Profit as `\(AR(q)-AC(q)\)` .pull-left[ - Profit is `$$\pi(q)=R(q)-C(q)$$` - Profit per unit can be calculated as: `$$\begin{align*} \frac{\pi(q)}{q}&=AR(q)-AC(q)\\ &=p-AC(q)\\ \end{align*}$$` ] .pull-right[ <img src="1.3-slides_files/figure-html/unnamed-chunk-13-1.png" width="504" style="display: block; margin: auto;" /> ] --- # Calculating Average Profit as `\(AR(q)-AC(q)\)` .pull-left[ - Profit is `$$\pi(q)=R(q)-C(q)$$` - Profit per unit can be calculated as: `$$\begin{align*} \frac{\pi(q)}{q}&=AR(q)-AC(q)\\ &=p-AC(q)\\ \end{align*}$$` - Multiply by `\(q\)` to get total profit: `$$\pi(q)=q\left[p-AC(q) \right]$$` ] .pull-right[ <img src="1.3-slides_files/figure-html/unnamed-chunk-14-1.png" width="504" style="display: block; margin: auto;" /> ] --- # Calculating Average Profit as `\(AR(q)-AC(q)\)` .pull-left[ - At market price of `\(p^*=\)` $10 - At `\(q^*=5\)` (per unit): - At `\(q^*=5\)` (totals): ] .pull-right[ <img src="1.3-slides_files/figure-html/unnamed-chunk-15-1.png" width="504" style="display: block; margin: auto;" /> ``` ## geom_segment: arrow = NULL, arrow.fill = NULL, lineend = butt, linejoin = round, na.rm = FALSE ## stat_identity: na.rm = FALSE ## position_identity ``` ] --- # Calculating Average Profit as `\(AR(q)-AC(q)\)` .pull-left[ - At market price of `\(p^*=\)` $10 - At `\(q^*=5\)` (per unit): - `\(AR(5)=\)` $10/unit - At `\(q^*=5\)` (totals): - `\(R(5)=\)` $50 ] .pull-right[ <img src="1.3-slides_files/figure-html/unnamed-chunk-16-1.png" width="504" style="display: block; margin: auto;" /> ] --- # Calculating Average Profit as `\(AR(q)-AC(q)\)` .pull-left[ - At market price of `\(p^*=\)` $10 - At `\(q^*=5\)` (per unit): - `\(AR(5)=\)` $10/unit - `\(AC(5)=\)` $7/unit - At `\(q^*=5\)` (totals): - `\(R(5)=\)` $50 - `\(C(5)=\)` $35 ] .pull-right[ <img src="1.3-slides_files/figure-html/unnamed-chunk-17-1.png" width="504" style="display: block; margin: auto;" /> ] --- # Calculating Average Profit as `\(AR(q)-AC(q)\)` .pull-left[ - At market price of `\(p^*=\)` $10 - At `\(q^*=5\)` (per unit): - `\(AR(5)=\)` $10/unit - `\(AC(5)=\)` $7/unit - `\(A\pi(5)=\)` $3/unit - At `\(q^*=5\)` (totals): - `\(R(5)=\)` $50 - `\(C(5)=\)` $35 - `\(\pi(5)=\)` $15 ] .pull-right[ <img src="1.3-slides_files/figure-html/unnamed-chunk-18-1.png" width="504" style="display: block; margin: auto;" /> ] --- # Calculating Average Profit as `\(AR(q)-AC(q)\)` .pull-left[ - At market price of `\(p^*=\)` $2 - At `\(q^*=1\)` (per unit): - At `\(q^*=1\)` (totals): ] .pull-right[ <img src="1.3-slides_files/figure-html/unnamed-chunk-19-1.png" width="504" style="display: block; margin: auto;" /> ] --- # Calculating Average Profit as `\(AR(q)-AC(q)\)` .pull-left[ - At market price of `\(p^*=\)` $2 - At `\(q^*=1\)` (per unit): - `\(AR(1)=\)` $2/unit - At `\(q^*=5\)` (totals): - `\(R(1)=\)` $2 ] .pull-right[ <img src="1.3-slides_files/figure-html/unnamed-chunk-20-1.png" width="504" style="display: block; margin: auto;" /> ] --- # Calculating Average Profit as `\(AR(q)-AC(q)\)` .pull-left[ - At market price of `\(p^*=\)` $2 - At `\(q^*=5\)` (per unit): - `\(AR(1)=\)` $2/unit - `\(AC(1)=\)` $7/unit - At `\(q^*=5\)` (totals): - `\(R(1)=\)` $2 - `\(C(5)=\)` $35 ] .pull-right[ <img src="1.3-slides_files/figure-html/unnamed-chunk-21-1.png" width="504" style="display: block; margin: auto;" /> ] --- # Calculating Average Profit as `\(AR(q)-AC(q)\)` .pull-left[ - At market price of `\(p^*=\)` $2 - At `\(q^*=5\)` (per unit): - `\(AR(1)=\)` $2/unit - `\(AC(1)=\)` $10/unit - `\(A\pi(1)=\)` -$8/unit - At `\(q^*=5\)` (totals): - `\(R(1)=\)` $2 - `\(C(1)=\)` $10 - `\(\pi(1)=\)` -$8 ] .pull-right[ <img src="1.3-slides_files/figure-html/unnamed-chunk-22-1.png" width="504" style="display: block; margin: auto;" /> ] --- class: inverse, center, middle # Short-Run Shut-Down Decisions --- # Short-Run Shut-Down Decisions .pull-left[ - What if a firm's profits at `\(q^*\)` are *negative* (i.e. it earns **losses**)? - Should it produce at all? ] .pull-right[ .center[ ![:scale 90%](https://www.dropbox.com/s/9ljdldig9i71e2r/emptywarehouse.jpg?raw=1) ] ] --- # Short-Run Shut-Down Decisions .pull-left[ - Suppose firm chooses to produce **nothing** `\((q=0)\)`: - If it has fixed costs, its profits are: `$$\begin{align*} \pi(q)&=pq-C(q)\\ \end{align*}$$` ] .pull-right[ .center[ ![:scale 90%](https://www.dropbox.com/s/9ljdldig9i71e2r/emptywarehouse.jpg?raw=1) ] ] --- # Short-Run Shut-Down Decisions .pull-left[ - Suppose firm chooses to produce **nothing** `\((q=0)\)`: - If it has fixed costs, its profits are: `$$\begin{align*} \pi(q)&=pq-C(q)\\ \pi(q)&=pq-f-VC(q)\\ \end{align*}$$` ] .pull-right[ .center[ ![:scale 90%](https://www.dropbox.com/s/9ljdldig9i71e2r/emptywarehouse.jpg?raw=1) ] ] --- # Short-Run Shut-Down Decisions .pull-left[ - Suppose firm chooses to produce **nothing** `\((q=0)\)`: - If it has fixed costs, its profits are: `$$\begin{align*} \pi(q)&=pq-C(q)\\ \pi(q)&=pq-f-VC(q)\\ \pi(0)&=-f\\ \end{align*}$$` ] .pull-right[ .center[ ![:scale 90%](https://www.dropbox.com/s/9ljdldig9i71e2r/emptywarehouse.jpg?raw=1) ] ] --- # Short-Run Shut-Down Decisions - A firm should choose to produce nothing `\((q=0)\)` only when: `$$\begin{align*} \pi \text{ from producing} &< \pi \text{ from not producing}\\ \end{align*}$$` --- # Short-Run Shut-Down Decisions - A firm should choose to produce nothing `\((q=0)\)` only when: `$$\begin{align*} \pi \text{ from producing} &< \pi \text{ from not producing}\\ \pi(q) &< -f \\ \end{align*}$$` --- # Short-Run Shut-Down Decisions - A firm should choose to produce nothing `\((q=0)\)` only when: `$$\begin{align*} \pi \text{ from producing} &< \pi \text{ from not producing}\\ \pi(q) &< -f \\ pq-VC(q)-f &<-f\\ \end{align*}$$` --- # Short-Run Shut-Down Decisions - A firm should choose to produce nothing `\((q=0)\)` only when: `$$\begin{align*} \pi \text{ from producing} &< \pi \text{ from not producing}\\ \pi(q) &< -f \\ pq-VC(q)-f &<-f\\ pq-VC(q) &< 0\\ \end{align*}$$` --- # Short-Run Shut-Down Decisions - A firm should choose to produce nothing `\((q=0)\)` only when: `$$\begin{align*} \pi \text{ from producing} &< \pi \text{ from not producing}\\ \pi(q) &< -f \\ pq-VC(q)-f &<-f\\ pq-VC(q) &< 0\\ pq &< VC(q)\\ \end{align*}$$` --- # Short-Run Shut-Down Decisions - A firm should choose to produce nothing `\((q=0)\)` only when: `$$\begin{align*} \pi \text{ from producing} &< \pi \text{ from not producing}\\ \pi(q) &< -f \\ pq-VC(q)-f &<-f\\ pq-VC(q) &< 0\\ pq &< VC(q)\\ \mathbf{p} &< \mathbf{AVC(q)}\\ \end{align*}$$` --- # Short-Run Shut-Down Decisions .pull-left[ - .hi[Shut down price]: firm will shut down production *in the short run* when `\(p<AVC(q)\)` ] .pull-right[ .center[ ![](https://www.dropbox.com/s/5yziq49xln55d81/shutitdown.jpg?raw=1) ] ] --- class: inverse, center, middle # The Firm's Short Run Supply Decision --- # The Firm's Short Run Supply Decision .pull-left[ <img src="1.3-slides_files/figure-html/unnamed-chunk-23-1.png" width="504" style="display: block; margin: auto;" /> ] --- # The Firm's Short Run Supply Decision .pull-left[ <img src="1.3-slides_files/figure-html/unnamed-chunk-24-1.png" width="504" style="display: block; margin: auto;" /> ] --- # The Firm's Short Run Supply Decision .pull-left[ <img src="1.3-slides_files/figure-html/unnamed-chunk-25-1.png" width="504" style="display: block; margin: auto;" /> ] --- # The Firm's Short Run Supply Decision .pull-left[ <img src="1.3-slides_files/figure-html/unnamed-chunk-26-1.png" width="504" style="display: block; margin: auto;" /> ] .pull-right[ ] --- # The Firm's Short Run Supply Decision .pull-left[ <img src="1.3-slides_files/figure-html/unnamed-chunk-27-1.png" width="504" style="display: block; margin: auto;" /> ] .pull-right[ .center[ Firm's short run (inverse) supply: ] `$$\begin{cases} p=MC(q) & \text{if } p \geq AVC \\ q=0 & \text{If } p < AVC\\ \end{cases}$$` ] --- # The Firm's Short Run Supply Decision .pull-left[ <img src="1.3-slides_files/figure-html/unnamed-chunk-28-1.png" width="504" style="display: block; margin: auto;" /> ] .pull-right[ .center[ Firm's short run (inverse) supply: ] `$$\begin{cases} p=MC(q) & \text{if } p \geq AVC \\ q=0 & \text{If } p < AVC\\ \end{cases}$$` ] --- # Summary: **1. Choose `\(q^*\)` such that `\(MR(q)=MC(q)\)`** -- **2. Profit `\(\pi=q[p-AC(q)]\)`** -- **3. Shut down if `\(p<AVC(q)\)`** -- .center[ Firm's short run (inverse) supply: ] `$$\begin{cases} p=MC(q) & \text{if } p \geq AVC\\ q=0 & \text{If } p < AVC\\ \end{cases}$$` --- # Choosing the Profit-Maximizing Output `\(q^*\)`: Example I .green[**Example**]: Bob's barbershop gives haircuts in a very competitive market, where barbers cannot differentiate their haircuts. The current market price of a haircut is $15. Bob's daily short run costs are given by: `$$\begin{align*} C(q) &= 0.5q^2\\ MC(q) &=q\\ \end{align*}$$` 1. How many haircuts per day would maximize Bob's profits? 2. How much profit will Bob earn per day? 3. Find Bob's shut down price. --- # Choosing the Profit-Maximizing Output `\(q^*\)`: Example II .green[**Example**]: A firm has short-run costs given by: `$$\begin{aligned} C(q)&=q^2+1\\ MC(q)&=2q\\ \end{aligned}$$` .smallest[ 1. Write equations for fixed costs, variable costs, average fixed costs, average variable costs, and for average (total) costs. 2. Suppose the firm is in a competitive market, and the current market price is $4, how many units of output maximize profits? 3. How much profit will this firm earn? 4. At what market price would the firm break even `\((\pi=0)\)`? 5. Below what market price would the firm shut down in the short run if it were earning losses? ]